Therapeutic inhibition of the complement system-Y2K update

Activation of complement is an essential part of the mechanism of pathogenesis of a large number of human diseases; its inhibition by pharmacological means is likely to suppress disease processes in complement mediated diseases. From this point of view low molecular weight synthetic inhibitors of complement are being developed and high molecular weight natural inhibitors of human origin present in plasma or embedded in cell membrane are being purified or produced in their recombinant forms. This review is concerned with high molecular weight inhibitors, some of which are already in clinical use but may be efficacious in many other diseases in which they have not yet been tried. C1-esterase inhibitor (C1-INH) concentrate prepared from human plasma is being successfully used for the treatment of hereditary angioneurotic edema. Recently, C1-INH has been found to be consumed in severe inflammation and has been shown to exert beneficial effects in several inflammatory conditions such as human sepsis, post-operative myocardial dysfunction due to reperfusion injury, severe capillary leakage syndrome after bone marrow transplantation, reperfusion injury after lung transplantation, burn, and cytotoxicity caused by IL-2 therapy in cancer. Factor I has been used for the treatment of factor I deficiency. Recombinant soluble forms of membrane cofactor protein (MCP), and decay accelerating factor (DAF) have not yet been tried in humans but have been shown to be effective in immune complex mediate inflammation in animals. Organs of pigs transgenic for one or more of human membrane regulators of complement namely membrane cofactor protein (MCP), decay accelerating factor (DAF) or CD59, are being produced for transplantation into humans. They have been shown to be resistant to hyperacute rejection in non-human primates; acute vascular rejection is still a problem in their clinical use. It is hoped that these observations together with future developments will make xeno-transplantation in clinical practice a reality. Several recombinant variants of complement receptor 1 (CR1) have been produced. The most effective of these appears to be sCR1-SLe x, sCR1 part of which inhibits complement and carbohydrate Sle x moiety inhibits selectin mediated interactions of neutrophils and lymphocytes with endothelium. Although clinical trials of sCR1 in humans is eagerly awaited, several of the recombinant versions of sCR1 have been shown to suppress ischemia/reperfusion injury, thermal trauma, and immune complex mediated inflammation. They have also been shown to be effective in experimental models of systemic sclerosis, arthritis, myasthenia gravis, Guillain Barre syndrome and glomerulonephritis. Intravenous immunoglobulin, three of the most prominent properties of which are neutralization of autoantibody activity, suppression of autoantibody production and inhibition of complement activity, is being used in several diseases. These include autoimmune thrombocyopenic purpura, Kawasaki disease and several neurological diseases such as myasthenia gravis and Guillain Barre syndrome. In many uncontrolled small scale studies intravenous immunoglobulin has been shown to be effective in many immunological including dermatological diseases; controlled clinical trials in a large number of patients with these diseases is needed to establish the efficacy. It is hoped that in future therapeutic inhibition of complement will be one of the major approaches to combat many human diseases. [References: 151].

Available online at: